11,276 research outputs found

    Estimating Refractive Index Spectra in Regions of Clear Air Turbulence

    Get PDF
    Estimation of refractive index spectra in regions of clear air turbulenc

    Summary of photovoltaic system performance models

    Get PDF
    A detailed overview of photovoltaics (PV) performance modeling capabilities developed for analyzing PV system and component design and policy issues is provided. A set of 10 performance models are selected which span a representative range of capabilities from generalized first order calculations to highly specialized electrical network simulations. A set of performance modeling topics and characteristics is defined and used to examine some of the major issues associated with photovoltaic performance modeling. Each of the models is described in the context of these topics and characteristics to assess its purpose, approach, and level of detail. The issues are discussed in terms of the range of model capabilities available and summarized in tabular form for quick reference. The models are grouped into categories to illustrate their purposes and perspectives

    Dissipative preparation of entanglement in optical cavities

    Full text link
    We propose a novel scheme for the preparation of a maximally entangled state of two atoms in an optical cavity. Starting from an arbitrary initial state, a singlet state is prepared as the unique fixed point of a dissipative quantum dynamical process. In our scheme, cavity decay is no longer undesirable, but plays an integral part in the dynamics. As a result, we get a qualitative improvement in the scaling of the fidelity with the cavity parameters. Our analysis indicates that dissipative state preparation is more than just a new conceptual approach, but can allow for significant improvement as compared to preparation protocols based on coherent unitary dynamics.Comment: 4 pages, 2 figure

    A Survey of Irradiated Pillars, Globules, and Jets in the Carina Nebul

    Get PDF
    We present wide-field, deep narrowband H2_2, Brγ\gamma, Hα\alpha, [S II], [O III], and broadband I and K-band images of the Carina star formation region. The new images provide a large-scale overview of all the H2_2 and Brγ\gamma emission present in over a square degree centered on this signature star forming complex. By comparing these images with archival HST and Spitzer images we observe how intense UV radiation from O and B stars affects star formation in molecular clouds. We use the images to locate new candidate outflows and identify the principal shock waves and irradiated interfaces within dozens of distinct areas of star-forming activity. Shocked molecular gas in jets traces the parts of the flow that are most shielded from the intense UV radiation. Combining the H2_2 and optical images gives a more complete view of the jets, which are sometimes only visible in H2_2. The Carina region hosts several compact young clusters, and the gas within these clusters is affected by radiation from both the cluster stars and the massive stars nearby. The Carina Nebula is ideal for studying the physics of young H II regions and PDR's, as it contains multiple examples of walls and irradiated pillars at various stages of development. Some of the pillars have detached from their host molecular clouds to form proplyds. Fluorescent H2_2 outlines the interfaces between the ionized and molecular gas, and after removing continuum, we detect spatial offsets between the Brγ\gamma and H2_2 emission along the irradiated interfaces. These spatial offsets can be used to test current models of PDRs once synthetic maps of these lines become available.Comment: Accepted in the Astronomical Journa

    Atmospheric variability and air-sea interaction

    Get PDF
    The topics studied include: (1) processing of Northern Hemispheric precipitation data, in order to fill in the transition seasons to provide a continuous 40 year data base on the variability of continental precipitation; (2) comparison of seasonally averaged fields of sea surface temperature obtained from ship observations in the North Atlantic and North Pacific in 1970 with the corresponding fields inferred from satellite observations; (3) estimation of seasonal average of total precipitable water at those admittedly few oceanic stations where repeated vertical soundings were made in 1970 and comparison with corresponding values inferred from satellite measurements; (4) comparison of seasonally averaged evaporation fields determined from ground based observations in 1970 with the field of divergence of the seasonal total horizontal water vapor flux inferred from satellite total water measurements and NMC wind data for the lower troposphere; (5) examination of meaning of convection-inversion index

    Surface energy fluxes in complex terrain

    Get PDF
    The emphasis of the 1985 NASA project activity was on field measurements of wind data and heat balance data. Initiatives included a 19 station mountaintop monitoring program, testing and refining the surface flux monitoring systems and packing and shipping equipment to the People's Republic of China in preparation for the 1986 Tibet Experiment. Other work included more extensive analyses of the 1984 Gobi Desert and Rocky Mountain observations plus some preliminary analyses of the 1985 mountaintop network data. Details of our field efforts are summarized and results of our data analyses are presented

    Entropy Production in Collisions of Relativistic Heavy Ions -- a signal for Quark-Gluon Plasma phase transition?

    Get PDF
    Entropy production in the compression stage of heavy ion collisions is discussed within three distinct macroscopic models (i.e. generalized RHTA, geometrical overlap model and three-fluid hydrodynamics). We find that within these models \sim 80% or more of the experimentally observed final-state entropy is created in the early stage. It is thus likely followed by a nearly isentropic expansion. We employ an equation of state with a first-order phase transition. For low net baryon density, the entropy density exhibits a jump at the phase boundary. However, the excitation function of the specific entropy per net baryon, S/A, does not reflect this jump. This is due to the fact that for final states (of the compression) in the mixed phase, the baryon density \rho_B increases with \sqrt{s}, but not the temperature T. Calculations within the three-fluid model show that a large fraction of the entropy is produced by nuclear shockwaves in the projectile and target. With increasing beam energy, this fraction of S/A decreases. At \sqrt{s}=20 AGeV it is on the order of the entropy of the newly produced particles around midrapidity. Hadron ratios are calculated for the entropy values produced initially at beam energies from 2 to 200 AGeV.Comment: 17 pages, 8 figures, uses epsfig.sty; Submitted to Nucl.Phys.
    • …
    corecore